Skip to content Skip to sidebar Skip to footer

How to Draw Planar Graphs

Abstruse

A graph is planar if it can be fatigued or embedded in the airplane so that no two edges intersect geometrically except at a vertex to which they are both incident. A plane graph is a planar graph with a stock-still planar embedding in the airplane. A drawing trouble X for a plane graph 1000 asks to determine whether Grand has a drawing D satisfying a prepare P of given properties and to find D if information technology exists. The corresponding trouble for a planar graph G asks to determine whether One thousand has a planar embedding \(\varGamma \) such that \(\varGamma \) has a drawing D satisfying the set P of backdrop and find D if it exists. If every embedding of Thousand has a drawing D satisfying P, then the problem is footling, i.e., the problem for airplane graphs and that for planar graphs are the same. Otherwise, the problem for planar graphs becomes difficult even if an efficient solution of the trouble for a airplane graph exists since a planar graph may accept an exponential number of planar embeddings. Various techniques are found in literature that are used to solve the drawing bug for planar graphs. In this paper nosotros review 3 of the widely used techniques, namely, (i) reduction to planarity testing, (ii) incremental modification and (three) SPQR-tree decomposition.

Keywords

  • Graph drawing
  • Plane graph
  • Planar graph
  • Planarity testing
  • SPQR-tree

References

  1. Angelini, P., et al.: Testing planarity of partially embedded graphs. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 202–221. SIAM (2010)

    Google Scholar

  2. Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. sixteen(ane), 5–35 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar

  3. Angelini, P., Di Battista, G., Patrignani, 1000.: Finding a minimum-depthembedding of a planar graph in O(\(n^4\)) time. Algorithmica 60(4), 890–937 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar

  4. Angelini, P., et al.: Monotone drawings of graphs with fixed embedding. Algorithmica 71(2), 233–257 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar

  5. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica v(one–four), 93–109 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar

  6. Boyer, J.Thou., Cortese, P.F., Patrignani, Yard., Di Battista, G.: Stop minding your P's and Q's: implementing a fast and simple DFS-based planarity testing and embedding algorithm. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_3

    CrossRef  Google Scholar

  7. Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(three), 421–438 (2014)

    MathSciNet  MATH  CrossRef  Google Scholar

  8. Chang, Y.J., Yen, H.C.: On bend-minimized orthogonal drawings of planar 3-graphs. In: Proceedings of 33rd International Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar

  9. Chiba, Due north., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. Prog. Graph Theory 173, 153–173 (1984)

    MathSciNet  MATH  Google Scholar

  10. De Fraysseix, H., Pach, J., Pollack, R.: How to depict a planar graph on a filigree. Combinatorica 10(1), 41–51 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar

  11. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar

  12. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica xv(4), 302–318 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar

  13. Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. arXiv preprint, arXiv:1910.11782 (2019)

  14. Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings in quadratic time. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 481–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_34

    CrossRef  Google Scholar

  15. Garg, A., Tamassia, R.: A new minimum cost flow algorithm with applications to graph cartoon. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–216. Springer, Heidelberg (1997). https://doi.org/10.1007/iii-540-62495-3_49

    CrossRef  Google Scholar

  16. Garg, A., Tamassia, R.: On the computational complexity of upwardly and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar

  17. Haeupler, B., Tarjan, R.East.: Planarity algorithms via PQ-trees. Electron. Notes Discret. Math. 31, 143–149 (2008)

    MATH  CrossRef  Google Scholar

  18. Hasan, M.M., Rahman, M.S.: No-bend orthogonal drawings and no-curve orthogonally convex drawings of planar graphs (extended abstract). In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 254–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_21

    CrossRef  Google Scholar

  19. Hasan, M.M., Rahman, M.South., Karim, Thousand.R.: Box-rectangular drawings of planar graphs. J. Graph Algorithms Appl. 17(6), 629–646 (2013)

    MathSciNet  MATH  CrossRef  Google Scholar

  20. Hong, S., Tokuyama, T.: Algorithmics for beyond planar graphs. In: NII Shonan Meeting Seminar, no. 27, pp. 51–63 (2016)

    Google Scholar

  21. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(four), 549–568 (1974)

    MathSciNet  MATH  CrossRef  Google Scholar

  22. Hossain, Yard., Mondal, D., Rahman, Chiliad., Salma, S.: Universal line-sets for drawing planar 3-copse. J. Graph Algorithms Appl. 17(2), 59–79 (2013)

    MathSciNet  MATH  CrossRef  Google Scholar

  23. Hossain, Thou.I., Rahman, One thousand.S.: Good spanning trees in graph drawing. Theor. Comput. Sci. 607, 149–165 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar

  24. Hossain, M.I., Rahman, M.S.: Direct-line monotone grid drawings of series-parallel graphs. Discrete Math. Algorithms Appl. 7(02), 1550007 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar

  25. Mehlhorn, K., Mutzel, P.: On the embedding phase of the hopcroft and tarjan planarity testing algorithm. Algorithmica 16(2), 233–242 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar

  26. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing, vol. 12. World Scientific Publishing Company, Singapore (2004)

    MATH  CrossRef  Google Scholar

  27. Rahman, One thousand.S.: Bones Graph Theory. Springer, Cham (2017). https://doi.org/10.1007/978-three-319-49475-three

    MATH  CrossRef  Google Scholar

  28. Rahman, G.Southward., Egi, North., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inform. Syst. 88(1), 23–thirty (2005)

    MATH  CrossRef  Google Scholar

  29. Rahman, M.Due south., Nakano, Southward., Nishizeki, T.: Rectangular grid drawings of plane graphs. Comput. Geom. x(iii), 203–220 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar

  30. Rahman, M.S., Nakano, S., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic aeroplane graphs. J. Graph Algorithms Appl. iii, 31–62 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar

  31. Rahman, One thousand.S., Nakano, S., Nishizeki, T.: Rectangular drawings of aeroplane graphs without designated corners. Comput. Geom. 21(3), 121–138 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar

  32. Rahman, G.Due south., Nishizeki, T.: Curve-minimum orthogonal drawings of airplane 3-graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 367–378. Springer, Heidelberg (2002). https://doi.org/10.1007/iii-540-36379-3_32

    CrossRef  Google Scholar

  33. Rahman, Chiliad.S., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. J. Algorithms 50(1), 62–78 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar

  34. Samee, M.A.H., Alam, M.J., Adnan, One thousand.A., Rahman, M.South.: Minimum segment drawings of series-parallel graphs with the maximum degree three. In: Tollis, I.K., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 408–419. Springer, Heidelberg (2009). https://doi.org/x.1007/978-3-642-00219-9_40

    CrossRef  Google Scholar

  35. Samee, M.A.H., Rahman, M.Due south.: Upward planar drawings of series-parallel digraphs with maximum degree three. In: Proceedings of WALCOM 2007, pp. 28–45. Bangladesh Academy of Sciences (2007)

    Google Scholar

  36. Schnyder, Due west.: Embedding planar graphs on the filigree. In: Proceedings of the Offset Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. Society for Industrial and Applied Mathematics (1990)

    Google Scholar

  37. Shih, W.M., Hsu, W.Fifty.: A new planarity exam. Theor. Comput. Sci. 223(i), 179–192 (1999)

    MathSciNet  MATH  Google Scholar

  38. Sultana, S., Rahman, 1000.South., Roy, A., Tairin, S.: Bar one-visibility drawings of 1-planar graphs. In: Gupta, P., Zaroliagis, C. (eds.) ICAA 2014. LNCS, vol. 8321, pp. 62–76. Springer, Cham (2014). https://doi.org/x.1007/978-3-319-04126-1_6

    CrossRef  Google Scholar

  39. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. sixteen(3), 421–444 (1987)

    MathSciNet  MATH  CrossRef  Google Scholar

  40. Thomassen, C.: Planarity and duality of finite and space graphs. J. Rummage. Theory Ser. B 29(2), 244–271 (1980)

    MathSciNet  MATH  CrossRef  Google Scholar

  41. Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, The statesR. (eds.) Progress in Graph Theory. Academic Printing, New York (1984)

    MATH  Google Scholar

  42. Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. three(1), 304–320 (1960)

    MathSciNet  MATH  CrossRef  Google Scholar

Download references

Acknowledgement

Nosotros thank Debajyoti Mondal and Shin-ichi Nakano for their useful comments on the manuscript of this paper.

Author information

Affiliations

Respective author

Correspondence to Md. Saidur Rahman .

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this newspaper

Rahman, M.Due south., Karim, 1000.R. (2020). Drawing Planar Graphs. In: Rahman, M., Sadakane, Yard., Sung, WK. (eds) WALCOM: Algorithms and Ciphering. WALCOM 2020. Lecture Notes in Computer science(), vol 12049. Springer, Cham. https://doi.org/10.1007/978-3-030-39881-1_1

Download commendation

  • .RIS
  • .ENW
  • .BIB
  • DOI : https://doi.org/x.1007/978-3-030-39881-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39880-4

  • Online ISBN: 978-3-030-39881-i

  • eBook Packages: Estimator Science Information science (R0)

williamstudder.blogspot.com

Source: https://link.springer.com/chapter/10.1007/978-3-030-39881-1_1

Enviar um comentário for "How to Draw Planar Graphs"