How to Draw Planar Graphs
Abstruse
A graph is planar if it can be fatigued or embedded in the airplane so that no two edges intersect geometrically except at a vertex to which they are both incident. A plane graph is a planar graph with a stock-still planar embedding in the airplane. A drawing trouble X for a plane graph 1000 asks to determine whether Grand has a drawing D satisfying a prepare P of given properties and to find D if information technology exists. The corresponding trouble for a planar graph G asks to determine whether One thousand has a planar embedding \(\varGamma \) such that \(\varGamma \) has a drawing D satisfying the set P of backdrop and find D if it exists. If every embedding of Thousand has a drawing D satisfying P, then the problem is footling, i.e., the problem for airplane graphs and that for planar graphs are the same. Otherwise, the problem for planar graphs becomes difficult even if an efficient solution of the trouble for a airplane graph exists since a planar graph may accept an exponential number of planar embeddings. Various techniques are found in literature that are used to solve the drawing bug for planar graphs. In this paper nosotros review 3 of the widely used techniques, namely, (i) reduction to planarity testing, (ii) incremental modification and (three) SPQR-tree decomposition.
Keywords
- Graph drawing
- Plane graph
- Planar graph
- Planarity testing
- SPQR-tree
References
-
Angelini, P., et al.: Testing planarity of partially embedded graphs. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 202–221. SIAM (2010)
-
Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. sixteen(ane), 5–35 (2012)
-
Angelini, P., Di Battista, G., Patrignani, 1000.: Finding a minimum-depthembedding of a planar graph in O(\(n^4\)) time. Algorithmica 60(4), 890–937 (2011)
-
Angelini, P., et al.: Monotone drawings of graphs with fixed embedding. Algorithmica 71(2), 233–257 (2015)
-
Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica v(one–four), 93–109 (1990)
-
Boyer, J.Thou., Cortese, P.F., Patrignani, Yard., Di Battista, G.: Stop minding your P's and Q's: implementing a fast and simple DFS-based planarity testing and embedding algorithm. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_3
-
Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(three), 421–438 (2014)
-
Chang, Y.J., Yen, H.C.: On bend-minimized orthogonal drawings of planar 3-graphs. In: Proceedings of 33rd International Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
-
Chiba, Due north., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. Prog. Graph Theory 173, 153–173 (1984)
-
De Fraysseix, H., Pach, J., Pollack, R.: How to depict a planar graph on a filigree. Combinatorica 10(1), 41–51 (1990)
-
Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998)
-
Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica xv(4), 302–318 (1996)
-
Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. arXiv preprint, arXiv:1910.11782 (2019)
-
Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings in quadratic time. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 481–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_34
-
Garg, A., Tamassia, R.: A new minimum cost flow algorithm with applications to graph cartoon. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–216. Springer, Heidelberg (1997). https://doi.org/10.1007/iii-540-62495-3_49
-
Garg, A., Tamassia, R.: On the computational complexity of upwardly and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)
-
Haeupler, B., Tarjan, R.East.: Planarity algorithms via PQ-trees. Electron. Notes Discret. Math. 31, 143–149 (2008)
-
Hasan, M.M., Rahman, M.S.: No-bend orthogonal drawings and no-curve orthogonally convex drawings of planar graphs (extended abstract). In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 254–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_21
-
Hasan, M.M., Rahman, M.South., Karim, Thousand.R.: Box-rectangular drawings of planar graphs. J. Graph Algorithms Appl. 17(6), 629–646 (2013)
-
Hong, S., Tokuyama, T.: Algorithmics for beyond planar graphs. In: NII Shonan Meeting Seminar, no. 27, pp. 51–63 (2016)
-
Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(four), 549–568 (1974)
-
Hossain, Yard., Mondal, D., Rahman, Chiliad., Salma, S.: Universal line-sets for drawing planar 3-copse. J. Graph Algorithms Appl. 17(2), 59–79 (2013)
-
Hossain, Thou.I., Rahman, One thousand.S.: Good spanning trees in graph drawing. Theor. Comput. Sci. 607, 149–165 (2015)
-
Hossain, M.I., Rahman, M.S.: Direct-line monotone grid drawings of series-parallel graphs. Discrete Math. Algorithms Appl. 7(02), 1550007 (2015)
-
Mehlhorn, K., Mutzel, P.: On the embedding phase of the hopcroft and tarjan planarity testing algorithm. Algorithmica 16(2), 233–242 (1996)
-
Nishizeki, T., Rahman, M.S.: Planar Graph Drawing, vol. 12. World Scientific Publishing Company, Singapore (2004)
-
Rahman, One thousand.S.: Bones Graph Theory. Springer, Cham (2017). https://doi.org/10.1007/978-three-319-49475-three
-
Rahman, G.Southward., Egi, North., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inform. Syst. 88(1), 23–thirty (2005)
-
Rahman, M.Due south., Nakano, Southward., Nishizeki, T.: Rectangular grid drawings of plane graphs. Comput. Geom. x(iii), 203–220 (1998)
-
Rahman, M.S., Nakano, S., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic aeroplane graphs. J. Graph Algorithms Appl. iii, 31–62 (1999)
-
Rahman, One thousand.S., Nakano, S., Nishizeki, T.: Rectangular drawings of aeroplane graphs without designated corners. Comput. Geom. 21(3), 121–138 (2002)
-
Rahman, G.Due south., Nishizeki, T.: Curve-minimum orthogonal drawings of airplane 3-graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 367–378. Springer, Heidelberg (2002). https://doi.org/10.1007/iii-540-36379-3_32
-
Rahman, Chiliad.S., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. J. Algorithms 50(1), 62–78 (2004)
-
Samee, M.A.H., Alam, M.J., Adnan, One thousand.A., Rahman, M.South.: Minimum segment drawings of series-parallel graphs with the maximum degree three. In: Tollis, I.K., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 408–419. Springer, Heidelberg (2009). https://doi.org/x.1007/978-3-642-00219-9_40
-
Samee, M.A.H., Rahman, M.Due south.: Upward planar drawings of series-parallel digraphs with maximum degree three. In: Proceedings of WALCOM 2007, pp. 28–45. Bangladesh Academy of Sciences (2007)
-
Schnyder, Due west.: Embedding planar graphs on the filigree. In: Proceedings of the Offset Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. Society for Industrial and Applied Mathematics (1990)
-
Shih, W.M., Hsu, W.Fifty.: A new planarity exam. Theor. Comput. Sci. 223(i), 179–192 (1999)
-
Sultana, S., Rahman, 1000.South., Roy, A., Tairin, S.: Bar one-visibility drawings of 1-planar graphs. In: Gupta, P., Zaroliagis, C. (eds.) ICAA 2014. LNCS, vol. 8321, pp. 62–76. Springer, Cham (2014). https://doi.org/x.1007/978-3-319-04126-1_6
-
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. sixteen(3), 421–444 (1987)
-
Thomassen, C.: Planarity and duality of finite and space graphs. J. Rummage. Theory Ser. B 29(2), 244–271 (1980)
-
Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, The statesR. (eds.) Progress in Graph Theory. Academic Printing, New York (1984)
-
Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. three(1), 304–320 (1960)
Acknowledgement
Nosotros thank Debajyoti Mondal and Shin-ichi Nakano for their useful comments on the manuscript of this paper.
Author information
Affiliations
Respective author
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this newspaper
Rahman, M.Due south., Karim, 1000.R. (2020). Drawing Planar Graphs. In: Rahman, M., Sadakane, Yard., Sung, WK. (eds) WALCOM: Algorithms and Ciphering. WALCOM 2020. Lecture Notes in Computer science(), vol 12049. Springer, Cham. https://doi.org/10.1007/978-3-030-39881-1_1
Download commendation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/x.1007/978-3-030-39881-1_1
-
Published:
-
Publisher Name: Springer, Cham
-
Print ISBN: 978-3-030-39880-4
-
Online ISBN: 978-3-030-39881-i
-
eBook Packages: Estimator Science Information science (R0)
Source: https://link.springer.com/chapter/10.1007/978-3-030-39881-1_1
Enviar um comentário for "How to Draw Planar Graphs"